Project managers
A project manager is a professional in the field of project management. Project managers can have the responsibility of the planning, execution, and closing of any project, typically relating to construction industry, engineering, architecture, computing, or telecommunications. Many other fields in the production engineering and design engineering and heavy industrial also have project managers.
A project manager is the person accountable for accomplishing the stated project objectives. Key project management responsibilities include creating clear and attainable project objectives, building the project requirements, and managing the triple constraint for projects, which is cost, time, and scope.
A project manager is often a client representative and has to determine and implement the exact needs of the client, based on knowledge of the firm they are representing. The ability to adapt to the various internal procedures of the contracting party, and to form close links with the nominated representatives, is essential in ensuring that the key issues of cost, time, quality and above all, client satisfaction, can be realized.
Project Management Triangle


Like any human undertaking, projects need to be performed and delivered under certain constraints. Traditionally, these constraints have been listed as "scope," "time," and "cost".[1] These are also referred to as the "Project Management Triangle", where each side represents a constraint. One side of the triangle cannot be changed without affecting the others. A further refinement of the constraints separates product "quality" or "performance" from scope, and turns quality into a fourth constraint.
The time constraint refers to the amount of time available to complete a project. The cost constraint refers to the budgeted amount available for the project. The scope constraint refers to what must be done to produce the project's end result. These three constraints are often competing constraints: increased scope typically means increased time and increased cost, a tight time constraint could mean increased costs and reduced scope, and a tight budget could mean increased time and reduced scope.
The discipline of Project Management is about providing the tools and techniques that enable the project team (not just the project manager) to organize their work to meet these constraints.
Work Breakdown Structure


The Work Breakdown Structure (WBS) is a tree structure, which shows a subdivision of effort required to achieve an objective; for example a program, project, and contract. The WBS may be hardware, product, service, or process oriented.
A WBS can be developed by starting with the end objective and successively subdividing it into manageable components in terms of size, duration, and responsibility (e.g., systems, subsystems, components, tasks, subtasks, and work packages), which include all steps necessary to achieve the objective.[17]
The Work Breakdown Structure provides a common framework for the natural development of the overall planning and control of a contract and is the basis for dividing work into definable increments from which the statement of work can be developed and technical, schedule, cost, and labor hour reporting can be established.[24]
Project Management Framework


The Program (Investment) Life Cycle integrates the project management and system development life cycles with the activities directly associated with system deployment and operation. By design, system operation management and related activities occur after the project is complete and are not documented within this guide.[19]
For example, see figure, in the US United States Department of Veterans Affairs (VA) the program management life cycle is depicted and describe in the overall VA IT Project Management Framework to address the integration of OMB Exhibit 300 project (investment) management activities and the overall project budgeting process. The VA IT Project Management Framework diagram illustrates Milestone 4 which occurs following the deployment of a system and the closing of the project. The project closing phase activities at the VA continues through system deployment and into system operation for the purpose of illustrating and describing the system activities the VA considers part of the project. The figure illustrates the actions and associated artifacts of the VA IT Project and Program Management process.[19]
International standards
There have been several attempts to develop Project Management standards, such as:
- Capability Maturity Model from the Software Engineering Institute.
- GAPPS, Global Alliance for Project Performance Standards- an open source standard describing COMPETENCIES for project and program managers.
- A Guide to the Project Management Body of Knowledge
- HERMES method, Swiss general project management method, selected for use in Luxembourg and international organizations.
- The ISO standards ISO 9000, a family of standards for quality management systems, and the ISO 10006:2003, for Quality management systems and guidelines for quality management in projects.
- PRINCE2, PRojects IN Controlled Environments.
- Team Software Process (TSP) from the Software Engineering Institute.
- Total Cost Management Framework, AACE International's Methodology for Integrated Portfolio, Program and Project Management)
- V-Model, an original systems development method.
- The Logical framework approach, which is popular in international development organizations.
- IAPPM, The International Association of Project & Program Management, guide to Project Auditing and Rescuing Troubled Projects.
Project portfolio management
An increasing number of organizations are using, what is referred to as, project portfolio management (PPM) as a means of selecting the right projects and then using project management techniques[25] as the means for delivering the outcomes in the form of benefits to the performing private or not-for-profit organization.
Project management methods are used 'to do projects right' and the methods used in PPM are used 'to do the right projects'. In effect PPM is becoming the method of choice for selection and prioritising among resource inter-related projects in many industries and sectors.
Processes
Traditionally, project management includes a number of elements: four to five process groups, and a control system. Regardless of the methodology or terminology used, the same basic project management processes will be used.


Major process groups generally include[20]:
- Initiation
- Planning or development
- Production or execution
- Monitoring and controlling
- Closing
In project environments with a significant exploratory element (e.g., Research and development), these stages may be supplemented with decision points (go/no go decisions) at which the project's continuation is debated and decided. An example is the Stage-Gate model.
Initiation


The initiation processes determine the nature and scope of the project.[21] If this stage is not performed well, it is unlikely that the project will be successful in meeting the business’ needs. The key project controls needed here are an understanding of the business environment and making sure that all necessary controls are incorporated into the project. Any deficiencies should be reported and a recommendation should be made to fix them.
The initiation stage should include a plan that encompasses the following areas:
- Analyzing the business needs/requirements in measurable goals
- Reviewing of the current operations
- Financial analysis of the costs and benefits including a budget
- Stakeholder analysis, including users, and support personnel for the project
- Project charter including costs, tasks, deliverables, and schedule
Planning and design


After the initiation stage, the project is planned to an appropriate level of detail. The main purpose is to plan time, cost and resources adequately to estimate the work needed and to effectively manage risk during project execution. As with the Initiation process group, a failure to adequately plan greatly reduces the project's chances of successfully accomplishing its goals.
Project planning generally consists of[22]
- determining how to plan (e.g. by level of detail or rolling wave);
- developing the scope statement;
- selecting the planning team;
- identifying deliverables and creating the work breakdown structure;
- identifying the activities needed to complete those deliverables and networking the activities in their logical sequence;
- estimating the resource requirements for the activities;
- estimating time and cost for activities;
- developing the schedule;
- developing the budget;
- risk planning;
- gaining formal approval to begin work.
Additional processes, such as planning for communications and for scope management, identifying roles and responsibilities, determining what to purchase for the project and holding a kick-off meeting are also generally advisable.
For new product development projects, conceptual design of the operation of the final product may be performed concurrent with the project planning activities, and may help to inform the planning team when identifying deliverables and planning activities.
Executing


Executing consists of the processes used to complete the work defined in the project management plan to accomplish the project's requirements. Execution process involves coordinating people and resources, as well as integrating and performing the activities of the project in accordance with the project management plan. The deliverables are produced as outputs from the processes performed as defined in the project management plan.
Monitoring and controlling
Monitoring and controlling consists of those processes performed to observe project execution so that potential problems can be identified in a timely manner and corrective action can be taken, when necessary, to control the execution of the project. The key benefit is that project performance is observed and measured regularly to identify variances from the project management plan.


Monitoring and Controlling includes:[23]
- Measuring the ongoing project activities ('where we are');
- Monitoring the project variables (cost, effort, scope, etc.) against the project management plan and the project performance baseline (where we should be);
- Identify corrective actions to address issues and risks properly (How can we get on track again);
- Influencing the factors that could circumvent integrated change control so only approved changes are implemented
In multi-phase projects, the monitoring and control process also provides feedback between project phases, in order to implement corrective or preventive actions to bring the project into compliance with the project management plan.
Project Maintenance is an ongoing process, and it includes:[20]
- Continuing support of end users
- Correction of errors
- Updates of the software over time


In this stage, auditors should pay attention to how effectively and quickly user problems are resolved.
Over the course of any construction project, the work scope may change. Change is a normal and expected part of the construction process. Changes can be the result of necessary design modifications, differing site conditions, material availability, contractor-requested changes, value engineering and impacts from third parties, to name a few. Beyond executing the change in the field, the change normally needs to be documented to show what was actually constructed. This is referred to as Change Management. Hence, the owner usually requires a final record to show all changes or, more specifically, any change that modifies the tangible portions of the finished work. The record is made on the contract documents – usually, but not necessarily limited to, the design drawings. The end product of this effort is what the industry terms as-built drawings, or more simply, “as built.” The requirement for providing them is a norm in construction contracts.
When changes are introduced to the project, the viability of the project has to be re-assessed. It is important not to lose sight of the initial goals and targets of the projects. When the changes accumulate, the forecasted result may not justify the original proposed investment in the project.
Closing


Closing includes the formal acceptance of the project and the ending thereof. Administrative activities include the archiving of the files and documenting lessons learned.
This phase consists of:[20]
- Project close: Finalize all activities across all of the process groups to formally close the project or a project phase
- Contract closure: Complete and settle each contract (including the resolution of any open items) and close each contract applicable to the project or project phase.
Approaches
There are a number of approaches to managing project activities including agile, interactive, incremental, and phased approaches.
Regardless of the methodology employed, careful consideration must be given to the overall project objectives, timeline, and cost, as well as the roles and responsibilities of all participants and stakeholders.
The traditional approach
A traditional phased approach identifies a sequence of steps to be completed. In the "traditional approach", we can distinguish 5 components of a project (4 stages plus control) in the development of a project:


- Project initiation stage;
- Project planning and design stage;
- Project execution and construction stage;
- Project monitoring and controlling systems;
- Project completion.
Not all the projects will visit every stage as projects can be terminated before they reach completion. Some projects do not follow a structured planning and/or monitoring stages. Some projects will go through steps 2, 3 and 4 multiple times.
Many industries use variations on these project stages. For example, when working on a brick and mortar design and construction, projects will typically progress through stages like Pre-Planning, Conceptual Design, Schematic Design, Design Development, Construction Drawings (or Contract Documents), and Construction Administration. In software development, this approach is often known as the waterfall model,[16] i.e., one series of tasks after another in linear sequence. In software development many organizations have adapted the Rational Unified Process (RUP) to fit this methodology, although RUP does not require or explicitly recommend this practice. Waterfall development works well for small, well defined projects, but often fails in larger projects of undefined and ambiguous nature. The Cone of Uncertainty explains some of this as the planning made on the initial phase of the project suffers from a high degree of uncertainty. This becomes especially true as software development is often the realization of a new or novel product. In projects where requirements have not been finalized and can change, requirements management is used to develop an accurate and complete definition of the behavior of software that can serve as the basis for software development.[17] While the terms may differ from industry to industry, the actual stages typically follow common steps toproblem solving — "defining the problem, weighing options, choosing a path, implementation and evaluation."
Critical Chain Project Management
Critical Chain Project Management (CCPM) is a method of planning and managing projects that puts more emphasis on the resources (physical and human) needed in order to execute project tasks. The most complex part involves engineering professionals of different fields (Civil, Electrical, Mechanical etc) working together. It is an application of the Theory of Constraints (TOC) to projects. The goal is to increase the rate of throughput (or completion rates) of projects in an organization. Applying the first three of the five focusing steps of TOC, the system constraint for all projects is identified as are the resources. To exploit the constraint, tasks on the critical chain are given priority over all other activities. Finally, projects are planned and managed to ensure that the resources are ready when the critical chain tasks must start, subordinating all other resources to the critical chain.
Regardless of project type, the project plan should undergo Resource Leveling, and the longest sequence of resource-constrained tasks should be identified as the critical chain. In multi-project environments, resource leveling should be performed across projects. However, it is often enough to identify (or simply select) a single "drum" resource—a resource that acts as a constraint across projects—and stagger projects based on the availability of that single resource.


Extreme Project Management
In critical studies of Project Management, it has been noted that several of these fundamentally PERT-based models are not well suited for the multi-project company environment of today.[citation needed] Most of them are aimed at very large-scale, one-time, non-routine projects, and nowadays all kinds of management are expressed in terms of projects.
Using complex models for "projects" (or rather "tasks") spanning a few weeks has been proven to cause unnecessary costs and low maneuverability in several cases[citation needed]. Instead, project management experts try to identify different "lightweight" models, such as Agile Project Managementmethods including Extreme Programming for software development and Scrum techniques.
The generalization of Extreme Programming to other kinds of projects is extreme project management, which may be used in combination with theprocess modeling and management principles of human interaction management.
Event chain methodology
Event chain methodology is another method that complements critical path method and critical chain project management methodologies.
Event chain methodology is an uncertainty modeling and schedule network analysis technique that is focused on identifying and managing events and event chains that affect project schedules. Event chain methodology helps to mitigate the negative impact of psychological heuristics and biases, as well as to allow for easy modeling of uncertainties in the project schedules. Event chain methodology is based on the following principles.
- Probabilistic moment of risk: An activity (task) in most real life processes is not a continuous uniform process. Tasks are affected by external events, which can occur at some point in the middle of the task.
- Event chains: Events can cause other events, which will create event chains. These event chains can significantly affect the course of the project. Quantitative analysis is used to determine a cumulative effect of these event chains on the project schedule.
- Critical events or event chains: The single events or the event chains that have the most potential to affect the projects are the “critical events” or “critical chains of events.” They can be determined by the analysis.
- Project tracking with events: Even if a project is partially completed and data about the project duration, cost, and events occurred is available, it is still possible to refine information about future potential events and helps to forecast future project performance.
- Event chain visualization: Events and event chains can be visualized using event chain diagrams on a Gantt chart.


[]PRINCE2
PRINCE2 is a structured approach to project management, released in 1996 as a generic project management method.[18] It combined the original PROMPT methodology (which evolved into the PRINCE methodology) with IBM's MITP (managing the implementation of the total project) methodology. PRINCE2 provides a method for managing projects within a clearly defined framework. PRINCE2 describes procedures to coordinate people and activities in a project, how to design and supervise the project, and what to do if the project has to be adjusted if it does not develop as planned.
In the method, each process is specified with its key inputs and outputs and with specific goals and activities to be carried out. This allows for automatic control of any deviations from the plan. Divided into manageable stages, the method enables an efficient control of resources. On the basis of close monitoring, the project can be carried out in a controlled and organized way.
PRINCE2 provides a common language for all participants in the project. The various management roles and responsibilities involved in a project are fully described and are adaptable to suit the complexity of the project and skills of the organization.


Process-based management
Also furthering the concept of project control is the incorporation of process-based management. This area has been driven by the use of Maturity models such as the CMMI (Capability Maturity Model Integration) and ISO/IEC15504 (SPICE - Software Process Improvement and Capability Estimation).
Agile Project Management
Agile Project Management approaches based on the principles of human interaction management are founded on a process view of human collaboration. This contrasts sharply with the traditional approach. In the agile software development or flexible product developmentapproach, the project is seen as a series of relatively small tasks conceived and executed as the situation demands in an adaptive manner, rather than as a completely pre-planned process.